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Abstract. We study the possibility of a cancellation between the entropic bending rigidity due
to self-avoiding interaction and negative bending rigidity. Results of Monte Carlo simulation
show that a self-avoiding polymerized membrane with negative bending rigidity exhibits a phase
transition from the usual floppy flat phase to a rigid folded flat (thin plate) phase. Even for flexible
membranes, the complete cancellation does not occur. Based on these results, we discuss the
problems in theoretical approaches to the phase transitions of polymerized membranes.

1. Introduction

There has been considerable interest in the understanding of statistical properties of
polymerized (or tethered) membranes [1–3]. One of the surprising features is that the
self-avoiding polymerized membrane is flat when it is embedded in three dimensional space
[4–6]. The flat phase observed in the computer simulations was partly explained in terms
of the crumpling transition induced by the implicit entropic bending rigidity due to the
self-avoidance [7]. In fact, the restriction of the excluded volume interactions between the
next-nearest-neighbour particles through the core potential inevitably induces the bending
rigidity and prevents the membranes from bending freely. It is claimed in [7] that the
previous simulations of the hard sphere model did not treat the pure self-avoiding effect
and attributed the flatness to the model-dependent problems.

On the other hand, there is an interesting report insisting that polymerized membranes
with self-avoiding interactions are always flat even for small diameters of hard spheres
[5]. By reducing the size of the hard spheres, it is possible to remove the effect of the
entropic bending rigidity from the next-nearest-neighbour core potential and one can study
the pure self-avoiding effect. We also note a different computational method of enforcing
self-avoidance in a model system by using a triangulated surface at which no vertex can
cross a plane of a triangle created by any three neighbouring atoms [8, 9]. There is a
discrepancy between the results of these papers and we cannot draw definite conclusions.
Here, we assume that the self-avoiding membrane is flat even with this model, although the
crossovers are extremely slow [10].†
§ E-mail address: mori@monet.phys.s.u-tokyo.ac.jp
‖ E-mail address: komura@iizuka.isc.kyutech.ac.jp
† The results obtained in [8, 9] and in [10] are different. As in [11], we rely on the latter one.
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According to the paper by Kantor and Kremer [11], the model of a polymerized
membrane was described by a local Hamiltonian with repulsive interactions acting only
between hard spheres whose degree of neighbourhood does not exceed a certain valuel.
They found that the hard sphere diameterσ has al dependent critical valueσc(l) at which
the membrane undergoes a crumpling transition. Moreover, a scaling relation such that
σc(l)

3 ∼ l−4 has been found. This indicates that the self-avoiding membrane becomes flat
even for hard spheres of small diameter. Hence, the flatness is considered to be an inherent
property of self-avoiding polymerized membranes. In addition, these authors proposed
the following picture of the behaviour of the self-avoiding membrane. On a very short
length scale, the self-avoiding interaction is irrelevant and the membrane is crumpled. Up
to a certain length scalelcrmp, self-avoiding interactions produce an effective rigidity that
suffices to keep the entire membrane flat. Within this picture, the crumpling transition is
brought about by the effective rigidity. Beyond the scalelcrmp, the membrane is flat and the
self-avoiding interaction no longer plays an essential role.

While it was established that the self-avoiding polymerized membrane is flat in computer
simulations, there is still no satisfactory theory which explains this flatness. By applying
a Gaussian variational technique to the generalized Edwards model, it was found that the
membranes are crumpled above space dimensiond = 4 and the radius of gyrationRg scales
with the linear membrane sizeL asRg ∼ Lν whereν = 4/d [12–14]. This exponent gives
a good estimate for the results of computer simulations in higher space dimensionsd > 4
[15]. Their theory, however, can only treat the crumpled phase and does not tell anything
about the crumpling transition induced by the entropic rigidity. In addition, one cannot
answer why the Gaussian variational technique, instead of the Flory approximation [2] or
the perturbative renormalization method [16], does work in the membrane case.

Recently, the phase transition of polymerized membranes with attractive interactions
has been investigated by several people [7, 17–21]. Extensive computer simulations have
shown that there are two types of phase transition, depending on the flexibility of the
membrane [19]. When the membrane is less flexible, it undergoes a first-order phase
transition separating a high-temperature flat phase and a low-temperature collapsed phase. In
the presence of an open boundary, the membrane exhibits a well defined sequence of folding
transitions [17]. When the membrane is flexible, on the other hand, the transition becomes
either continuous or weakly first order. By assuming that the transition is continuous, the
exponent for the radius of gyrationν at the transition point is estimated asν = 0.85.

Phenomenological aspects of these phase transitions can be described by the Landau
model proposed by Abraham and Kardar [17, 20]. The above-explained different behaviours
depending on the flexibility of the membrane are discussed in the following way [20, 21].

An attractive interaction induces negative bending rigidity when the membrane is flat
and cancellation can occur between this negative rigidity and the entropic rigidity due to
the self-avoiding interactions. When the membrane is less flexible, the flat phase becomes
unstable before complete cancellation occurs and the transition becomes discontinuous or
first order. As for flexible membranes, the above cancellation can be complete and the
crumpling transition might occur. In this continuous transition, an intermediate crumpled
phase appears before the membrane becomes a collapsed phase. However, these theoretical
approaches incorporate the effect of a self-avoiding interaction through an effective bending
rigidity and only treat the instability of flat polymerized membranes without self-avoidance.

In this paper, we discuss the problem of cancellation between the entropic rigidity and
the negative bending rigidity both by theoretical arguments and Monte Carlo simulation.
We especially pay attention to the possibility of complete cancellation.

The outline of the present paper is as follows. In section 2, we use the generalized
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Edwards model to describe the flat phase of the membrane. We obtain the relation between
the σc(l) and l according to the scaling argument. In section 3, we explain the model
used for the Monte Carlo simulation. The total Hamiltonian includes both self-avoiding
interactions and local bending energy with negative bending rigidity. The flexibility of the
membrane can be changed by using different diameters of the hard spheres. Section 4
contains the results of our simulation. Our study shows that there occurs a phase transition
from the usual flat phase to another rigid flat phase which we call the ‘folded flat phase’. An
intermediate crumpled phase does not appear even for small hard spheres, which indicates
that complete cancellation does not occur.

2. Excluded volume effects in the flat phase

In this section, we shall use the Gaussian variational approximation [12–14] in order to
discuss the properties of a self-avoiding polymerized membrane being in the flat phase.
So far the self-avoiding interaction has always been considered to be irrelevant when the
membrane is flat [1]. This picture seems correct intuitively. However, if the self-avoidance
is irrelevant for the flat membrane, then what makes the membrane flat? To answer
this question, we use the generalized Edwards model for a flat self-avoiding polymerized
membrane.

According to the discussion by Kantor and Kremer [11], the membrane is crumpled at
short length scales. Hence, at this length scale, we can use the generalized Edwards model,

H[X(s)] = 1
2

∫
dDs ∂αXi∂αXi + u

∫
dDs

∫
dDs ′ δd [Xi(s) − Xi(s′)]. (2.1)

Here, Xi(sα) (i = 1, . . . , d, α = 1, . . . , D) describes the position of the membrane with
internal coordinatessα. u represents the strength of the excluded volume interaction. We
assume that the interactionδd [Xi(s) − Xi(s′)] is valid only when|s − s′| is smaller than
some length scalelcrmp. When |s − s′| is greater thanlcrmp, the self-avoiding interaction
becomes irrelevant.

In order to estimate the effect of the self-avoidance at short length scales, we employ the
usual variational method with the quadratic Hamiltonian in Fourier space with wavenumber
k [12, 14]:

H0 =
∫

dDk Xi(−k)g(k)Xi(k). (2.2)

From the variational equation with respect tog(k), it is possible to obtain the effective
rigidity κeff due to the self-avoidance of strengthu as

κeff = κbare+ c1u

∫
dDs s4〈|X(s) − X(0)|2〉−1−d/2 (2.3)

where〈|X(s)−X(0)|2〉 is the two-point function averaged over the variational Hamiltonian
equation (2.2) andc1 is some constant. We have also added the constant bare bending rigidity
κbare for later convenience. We note that this equation is valid only in the crumpled part
of the membrane, i.e. up to some length scalelcrmp. Beyond this length scale, the effect
of the self-avoidance turns out to be irrelevant. Thus the length scalelcrmp is determined
by the condition that the effective bending rigidity becomes large such that the crumpling
transition to the flat phase occurs. Therefore, the value of the effective rigidity equation (2.3)
is almost fixed at the critical valueκc of the crumpling transition of the membrane without
self-avoidance.



7442 S Mori and S Komura

In [11], the range of the neighbourhoodl and the critical diameter of the hard sphere
σc are determined by the condition at which the crumpling transition occurs. In this
case, l can be identified withlcrmp and u corresponds toσd

c . Although the behaviour
of 〈|X(s) − X(0)|2〉 near the length scalelcrmp is not clear, we simply assume here that
〈|X(s)−X(0)|2〉 = c2s

2 with some constantc2 since the membrane is almost flat near the
length scalelcrmp. Then the integral in equation (2.3) can be estimated to behave as∫

d2s s4(c2s
2)−1−d/2 ∼ l4−d

crmp (2.4)

for d < 4 and we obtain the following relation,

κc = κbare+ c3ul4−d
crmp (2.5)

where c3 is a positive constant. If we putκbare = 0, equation (2.5) corresponds to the
relation obtained by Kantor and Kremer†. In fact, what they have obtained isul4 ∼ 1 at
d = 3.

Next we consider the effect of the negative bending rigidity (κbare < 0). If we assume
that the system exhibits the crumpling transition as a result of the complete cancellation
between the effective entropic rigidity and the negative rigidity, the length scalelcrmp should
be the order of membrane sizeL. Therefore, the critical value of the negative rigidityκ0

bare
at which the crumpling transition occurs is determined by

κ0
bare = κc − c3uL4−d . (2.6)

From this equation, we see thatκ0
bare depends both onu and L, as long as the crumpling

transition occurs. In the following section, we examine this possibility by Monte Carlo
simulation.

3. Model and simulation method

In this section we describe the model for the polymerized membrane used in the computer
simulations and summarize the computational procedure. The model membrane being
embedded in three-dimensional space consists of hard spheres connected with flexible
bonds. As shown in figure 1, hard spheres are connected in a two-dimensional triangular
array and the polymerized membrane of finite size forms a hexagonal cluster. There are
N = (3L2 + 1)/4 spheres in such a membrane, whereL is the number of spheres on the
diameter. For the present simulation, we employ a commonly used tethering interaction,
i.e. the spheres interact with their nearest neighbours through the potential

VNN(r) =
{

0 σ < r <
√

3σ

∞ otherwise.
(3.1)

This potential consists of a hard core repulsive region which prevents the neighbouring
spheres from occupying the same space and a finite region where the spheres can move
freely. In addition to this neighbouring potential, self-avoiding interactions have been
included by restricting the distance between all the pairs of the spheres to be greater than
σ . In order to change the flexibility of the membrane, we allowσ to take several values
(< 1.0) although it is usually set equal to 1.0. In this case the model has the drawback that
the self-intersection is not necessarily prohibited. The membrane can be flexible and we
will study such a case.

† The discrepancy between theoretical and numerical results is considered to be from the simple assumption for
the two-point function. If we assume that〈|X(s) − X(0)|2〉 = c2s

ν with ν < 2.0, the correspondence becomes
better.
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Figure 1. A model of the polymerized membrane with linear sizeL = 9.

We also take into account the bending energy in the model by introducing the repulsive
spring between next-nearest-neighbour spheres in the network [4]

Hb = −κ ′

2

∑
NNN

|X(σ ) − X(σ ′)|2. (3.2)

In this case, the summation is taken over all next-nearest neighbours in the network. So
far, the bending rigidity parameterκ ′ has been set as positive numbers, which implies that
the bending energy forces the membranes to become flat. In contrast, we consider her an
anti-ferromagnetic-like interaction, namely, the rigidity parameterκ ′ takesnegativevalues.
If this interaction cancels the entropic bending energy completely, one might expect the
occurrence of a crumpling transition separating the flat phase and the crumpled phase. At
sufficiently large values of|κ ′|, the membranes are expected to be in the folded state. We
have used the standard Monte Carlo procedure (Metropolis algorithm) to investigate the
thermodynamic properties of self-avoiding polymerized membranes with negative bending
rigidity. The total Hamiltonian is the sum of equations (3.1) and (3.2) with the self-avoiding
interactions.

The random displacement of step sizes 6 0.2 is attempted on a randomly selected
sphere in the network and this procedure is repeated until the system reaches the thermal
equilibrium state. LetT denote the absolute temperature andkB the Boltzmann constant.
The attempted movement is always accepted if the energyEt of the trial movement does not
exceed the original energyE0. If Et exceedsE0, the move is accepted with the probability
exp[(E0 − Et)/kBT ]. The sequence of this procedure depends on the dimensionless
parameterκ = |κ ′|/kBT which is the measure for the temperature scale. Since the tethering
potential equation (3.1) has zero or infinite energy, the corresponding probability is either
1 (accepted) or 0 (rejected). For the bending energy equation (3.2), one has to evaluate
the probability exp[(E0 − Et)/kBT ] for each value ofκ. Due to the restriction of self-
avoidance, the distances between all the pairs in the network must be checked during the
simulation. Thus the procedure takes quite a long time for the system to reach equilibrium
configurations.

The relaxation timeτ is determined by the slowest mode corresponding to large-scale
motions. For phantom membranes,τ is given by the Rouse relaxation timeτ ≈ N/s2.
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It takes a much longer time for self-avoiding membranes to reach the equilibrium state,
which is one of the difficulties in carrying out the simulation. In order to know the typical
relaxation time, we have traced the behaviour of the eigenvalues of the inertia tensor whose
sum is equal to the square of the radius of gyration. Although each eigenvalue has different
relaxation time, the dynamics of the radius of gyration is dominated by the slowest time.
Through the analysis of auto-correlation functions, we found that the relaxation time is the
order of a few hundred Rouse times forL = 11, 13 and 17. For all of the runs, we have
collected at least 100 samples and in most cases 500 samples separated in time by such a
relaxation time.

4. Results

We have calculated the statistical properties of polymerized membranes over the range
0.0 6 κ 6 9.0 (−9.0 6 κ ′/kBT 6 0). We have first investigated the membranes of sizes
L = 11, 13 and 17 with the conventional diameterσ = 1.0. For the membranes of size
L = 17, unfortunately, equilibrium states were not realized forκ > 7.0 in our computer
system. To investigate the features of the membrane conformations, we have calculated the
inertia tensorIαβ defined by

Iαβ = 1

N

∑
i

XiαXiβ − 1

N2

∑
i,j

XiαXjβ (4.1)

where the summation is over the spheres for each configuration and the Greek subscripts
α and β denote the components of three-dimensional coordinates of the sphere. The
summation of three eigenvalues of the inertia tensor denoted byλ1, λ2 andλ3(λ1 6 λ2 6 λ3)

is equal to the squared radius of gyrationR2
g defined by

R2
g = 1

2N2

∑
i,j

|Xi − Xj |2. (4.2)

In the flat phase, the eigenvalues scale with the linear membrane sizeL asλ1 ∼ L2ν1, and
λ − 2 ∼ λ3 ∼ L2ν3 whereν3 ' 1.0. Hence the radius of gyration which is dominated by
the largest eigenvalueλ3 scales asR2

g ∼ L2. ν1 corresponds to the roughness exponent and
some computer simulations estimated its value as 0.5 ∼ 0.8 [4, 6].

In contrast to the flat phase, the membranes are isotropic in the crumpled or compact
phase. In this case, all the three eigenvalues and the squared radius of gyration scale with
the same exponentν1 = ν2 = ν3 = ν < 1.0. We have looked at each eigenvalue to find
the scaling behaviour of the membranes because the used system sizes are rather small.
Figure 2 shows three eigenvalues of the inertia tensor as a function ofκ for the membrane
size L = 13. It can be seen that all three eigenvalues decrease asκ increases. For small
κ, it is expected that the self-avoiding interaction dominates the negative bending forces.
Thus the membranes should be asymptotically flat. Asκ increases, the flat phase becomes
unstable and the membranes are expected to be driven into folded states. for largeκ, the two
largest eigenvaluesλ2 and λ3 converges to the same value, while the smallest eigenvalue
λ1 approaches a constant value.

To investigate the qualitative measure of anisotropic configurations of membranes, we
have calculated the asphericityA defined as the ratio of the largest to the smallest eigenvalue
such that

A(κ, L) = 〈λ1/λ3〉. (4.3)
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Figure 2. Three eigenvalues of inertia tensor as a function of rigidity for the sizeL = 13.

Hereafter〈· · ·〉 denotes the configurational average. Figure 3 depictsA(κ, L) for L = 11, 13
and 17. One can see that the asphericity is less than 0.2 for allκ. For fixedL, the asphericity
decreases to a minimal value and then increases asκ is increased. For all values ofκ, A

decreases with increasingL. In the limit of L → ∞, we expect thatA tends to zero
independent ofκ. These results suggest that the membranes are anisotropic for all values
of κ and the isotropically crumpled or collapsed phase will not appear.

Figure 3. AsphericityA as a function of rigidity parameterκ for L = 11, 13 and 17.

We have also attempted to determine the exponent sν1 andν3 for each different value
of κ. The results are summarized in table 1. We find thatν3 is almost equal to 1.0 for allκ
values within numerical uncertainty. On the other hand,ν1 approaches zero asκ increases,
indicating that the smallest eigenvalue is independent ofL and approaches a universal
non-zero constant at largeκ. We have also checked that the relationν2 = ν3 holds.
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Table 1. The exponentsν3 andν1 obtained from dataL = 11, 13 and 17.

κ ν3 ν1

0.0 0.94± 0.01 0.45± 0.09
1.0 0.95± 0.01 0.45± 0.12
2.0 0.91± 0.01 0.41± 0.11
3.0 0.97± 0.02 0.19± 0.05
4.0 0.94± 0.03 0.30± 0.07
5.0 1.03± 0.01 0.05± 0.03
6.0 0.99± 0.01 0.01± 0.01
7.0 0.84± 0.01 0.07± 0.02

Figure 4. The equilibrium configuration of the hexagonal membrane withL = 17 for κ = 1.0.
This picture corresponds to the flat phase.

In figure 4, a typical equilibrium configuration of membrane sizeL = 17 for κ = 1.0 is
depicted. This picture corresponds to the flat phase. Figure 5 represents the case forκ = 7.0.
Now the membrane is anisotropically folded and forms a hexagonal thin plate with a finite
width. From these observations, fixingσ = 1.0, membranes with negative bending rigidity
exhibit a transition from the flat phase to the folded rigid flat states by increasingκ. Since
an intermediate crumpled phase does not appear, the crumpling transition does not occur.

In view of the above results, we could not find any evidence for the existence of the
intermediate crumpled phase. In order to investigate the more flexible case, we have studied
membranes with smaller spheres, i.e.σ = 0.5 and 0.3. We have determined the exponents
ν3 and ν1 from the system sizesL = 11, 13 and 17. Table 2 summarizes the results for
several values ofκ. Again, ν2 is close toν3. Similar to the case ofσ = 1.0, there is no
isotropic intermediate crumpled phase even if the size of hard spheres is reduced.

In our simulation, we have also obtained other thermodynamic functions such as internal
energy or specific heat. In contrast to the situation of phantom membranes with bending
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Figure 5. Typical configuration ofL = 17 membrane withκ = 7.0. The perspectives except
for the upper right picture are along the directions of the principal axes of the three eigenvalues.

energy [2], we only found a vague peak for the case ofσ = 1.0 and no clear singularity
in the smaller sphere cases. Much more investigations are required in order to discuss the
nature of the phase transitions.

5. Discussion

In the theoretical part of this paper, we have used the generalized Edwards model to describe
the flat phase of the polymerized membrane. Within the picture by Kantor and Kremer,
we have obtained the scaling relation. In addition, we have discussed the possibility of the
cancellation between the entropic rigidity and the negative bending rigidity, which might
cause the crumpling transition.
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Table 2. Scaling exponents of maximum and minimum eigenvalues for diameterσ = 0.5 and
0.3.

σ = 0.5 σ = 0.3

κ ν3 ν1 ν3 ν1

1.0 0.87± 0.02 0.47± 0.12 0.82± 0.01 0.38± 0.11
2.0 0.74± 0.02 0.46± 0.09 0.73± 0.03 0.30± 0.07
3.0 0.87± 0.03 0.30± 0.11 0.80± 0.01 0.24± 0.08
4.0 0.90± 0.01 0.12± 0.03 0.78± 0.01 0.18± 0.04
5.0 0.90± 0.02 0.08± 0.02 0.78± 0.02 0.21± 0.02
6.0 0.89± 0.01 0.08± 0.01 0.81± 0.01 0.23± 0.04

However, the results of the Monte Carlo simulation showed that, instead of the crumpling
transition, the membrane exhibits a phase transition from the flat phase to the rigid folded
flat phase. An intermediate crumpled phase does not appear. We have also investigated the
membranes with more local flexibility consisting of smaller hard spheres(σ > 0.3). Even
in this case, the crumpled phase has not been observed within our simulation. From these
results, we conclude that the phase transition from the flat phase to the rigid folded flat
phase occurs before the negative rigidity cancels the entropic rigidity completely. At this
point, the flat phase of the self-avoiding membrane is different from that of the phantom
membrane, which shows the crumpling transition.

We thing that complete cancellation occurs only in the very flexible membrane with an
attractive interaction and hence the continuous transition is expected. Theoretical approaches
to describe the transition have incorporated the effect of the self-avoiding interaction through
the bending rigidity and treated only the stability of the flat phase of the phantom membrane
[20]. In such a treatment, both negative rigidity and an attractive interaction can cause the
crumpling transition. Our computer simulation, however, has made it clear that we cannot
incorporate the effect of the self-avoiding interaction through the effective bending rigidity
even if the membrane is flexible. Therefore, one must be careful about the conclusion
which is based on the identification of the flat self-avoiding membrane with the flat phantom
membrane.

Up to now, theoretical arguments concerning the stability of the flat phase have been
limited to phantom membranes. As far as the self-avoidance is concerned, we can only
discuss the existence region of the crumpled phase. These points are the most difficult
aspects in studying the polymerized membranes theoretically. That is, if one predicts some
instability in the flat phantom membrane, such phenomenon may not occur in the self-
avoiding membrane.

Finally, we comment that the phase transition under consideration is different from the
one discussed by David, Francesco and Guitter [22, 23]. What they studied is the phase
transition of the folding square lattice with negative bending rigidity and they showed that
there is a first-order transition separating the flat phase and the folded compact state. Since
hard cores are of finite size in our simulation, the membrane takes the folded flat state rather
than the folded compact state. However, since our simulations have been performed on
rather small system sizes, we could not accurately determine the properties of the transition.
In addition, the size of the hard spheres should be smaller in order to conclude whether
or not complete cancellation occurs for a very flexible membrane. We think that more
extensive simulations should be performed in the future.
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